Structured Prediction
Energy Networks

David Belanger
Andrew McCallum

|




Overview

Structured Prediction Background

— Multi-label classification

— Structured prediction approaches

— Expressivity-tractability tradeoffs

— Chicken and egg problem

Deep Learning and Structured Prediction

— Prior attempts to improve expressivity in structured prediction
— Motivation for our work

Structured Prediction Energy Networks

— Very generic prediction technique: gradient descent
— Model label interactions using a deep architecture

Experiments



STRUCTURED PREDICTION
BACKGROUND



Multi-Label Classification
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Independent Prediction

: G animal

: 6 daytime
G nighttime

a é G outside
G animal
G inside
Input Feature Independent Per-Label
Vector Predictors

Per-Label Prediction G G G G
A 4 4

Feature Vector Bad model,

but it’s fast!

A walk in the field



Joint Prediction

—> I — E,(y) —> argmin F,(y)
yey

Feature Energy Test-Time Optimization
Vector Function

CRF, HMM, etc.

Independent Prediction: models interactions among inputs
Joint Prediction: models interaction among inputs and among labels



Joint Structured Prediction Examples

Model Structure Prediction Method

Sequence Viterbi, Forward-Backward

Grid Loopy BP, Graph Cuts, Gibbs Sampling

Parse Tree Maximum Spanning Tree, Eisner Algorithm



Search-Based Joint Prediction

A walk in the

Eg. Hall et al., 2006; Daume et al., 2009; Chang et al., 2015



Why Test-Time Optimization?
Isn’t Everything ‘Feed Forward?’

*

y* = argmin F, (y) := G(x)

VS.

Answer: Yes, but this perspective isn’t helpful.
Overall, you want a predictor that is:
1) Parametrized compactly
2) Provides opportunities to inject domain knowledge.
3) Differentiable

Optimization-based prediction often satisfy these criteria.

Images: amazon.com and whitewaterwest.com



Tradeoffs in Structured Prediction

Statistical Computational

Expressivity vs. Parsimony Complexity of Prediction



Learning Joint Prediction Models

mgiﬂZL(yi,Fe(l‘i))

mgmzi: (y argymln o(y CE))

exact optimization may be intractable

' L( . Algorith Z- )
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Structured Prediction in Practice

* Goal 1:
Model the important interactions between x and y.

e Goal 2:

Choose a model that provides efficient combinatorial
optimization overy.

Model Inference Algorithm



Structure Learning

Input: multivariate data

Output: graphical model (directed or
undirected)

Goal: use the structure to study the data

Challenge: search in space of structures



STRUCTURED PREDICTION ENERGY
NETWORKS



Our Experiments

politics
sports

Multi-Label Classification

historical _document

cooking

S
00000

signed

Difficult Modeling Task

* Labels may be mutually exclusive, imply each other, etc.
 Would like to automatically discover the interactions between labels
e Candidate models (eg loopy CRFs) are computationally expensive



Deep Learning
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Motivation for Our Work

Neural networks are good at feature learning for the input x.
Can we also use them to do structure learning for the output y?

Y

Gradient descent is an extremely generic optimization algorithm.
Let’s use it at test time to produce predictions.

Model Inference Algorithm



Structured Prediction Energy Network

Energy Ea; (y)

Network
(a number)
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Differentiating the Energy

SEnergy P Feature
ol Network



SPEN

Key Simplification: Convex Relaxation of y to ¢
L L
0,17 — 10, 1]
Deep Energy Function

Feature Network F (ZI;) (returns a vector)

Energy Network E(F (QZ‘) . ?j)

‘Soft’ Prediction g* — arg min E:B (g)
y€[0,1]F

Solve using projected gradient descent

Final Prediction: either use soft prediction, or round



SPEN
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SPEN
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Prediction

initialize yo uniformly
f < F(X) %precompute features
while not converged do

gt <_ (f7 yt)

yt—l-]. <_ yt O eXp(gt) entropic mirror descent
— . — aka exponentiated gradien
Y11 < Normalize(gyyq) [ #eorremecsete

end

(Beck and Teboulle, 2003)



SPEN Architecture used
In Our Experiments

Feature Network: Multi-Layer Perceptron

F(x) = g(A2(9(Ai(x)))

Energy Network: Two Terms

ElOCal E y’l bT per-label linear model

Elxabel (y) — 62 (Cly) sometimes deeper



Architecture in Our Experiments




Structure Learning using SPENSs

E°(y) = c3 9(C1)

Measurement Matrix

Computation scales linearly with number of labels.
Captures high-arity interactions without exponential blowup.

Measurement matrix may reveal interpretable structure.



Learning

Structured SVM Loss (Taskar et al., 2004; Tsochantaridis et al., 2004)

D max[Ayiy) — o, (y) + o, (4],

Loss-Augmented Inference

argmin [~A(y:,y) + Er, ()

we require differentiable surrogate

Learning: max-min problem with inexact optimization in inner loop.



Comparison to CRFs

@I@*G*G*@

B (y) = 55 vec(yy ')

Dependence on # labels O(L) O(L?) or worse
Convex prediction problem No Sometimes
Automatic Structure Learning Easy Yes, but Complicated
Max Likelihood Training No Yes
‘Soft’ Predictions Kind Of Yes

[_/ LP Relaxation No Yes

Inexact prediction in inner loop of SSVM is more benign for CRFs than for SPENS (Kulesza & Pereira,
2007; Finley & Joachims, 2008)



Details

* Cache features F(x) for E(F'(x), 7).

* Aggressively parallelize prediction using
GPUs.

* Pre-train feature network F(x) using
independent per-label loss.

* Use more sophisticated optimization fory
(eg., Nesterov Acceleration).



RELATED WORK



Comparing Structured Prediction Tasks

Constrained Outputs Strong Prior
Knowledge about
Likely Structures

Sequence yes
Tagging

Image yes
Segmentation




Deep Learning &
Independent Prediction

Just make it deep!

G animal
G daytime
G nighttime

a q O outside
G animal
G inside

Input Feature Independent Per-Label
Vector Predictors

J @ ¢ ¢ ¢
P 4+ 4+ 4

learned features m

X



Deep Learning &
Joint Prediction

Conditional Random Field:
mapping from x to a Markov Random Field overy

Prior work: use deep features, but keep same graphical model fory

Y -

learned features

X

Pro: use existing prediction algorithms
Con: no structure learning; only performs feature learning on x

Eg., LeCun et al., 2006; Collobert et al., 2011; Huang et al., 2015



Deep ‘Unrolling’
of Structured Prediction Algorithms

mein Z L (yi, argymin Ey(y; :cz)> —_— II}giIl ZZ: L (yi, Algorithmy o) (xz)>

Differentiable Gray Box

> D>FE,.9(y)=>

Parametrized

Input Energy Function
Feature Vector

Algorithmy o ()

Step 1: choose a model family

Step 2: choose an (approximate) prediction technique

Step 3: unroll the prediction technique into a deep computation graph with
free parameters W

Step 4: train W directly with backprop

Eg., Stoyanov et al., 2011; Domke, 2013; Hershey et al., 2014; Zheng et al., 2015



Example of ‘Unrolling’

Zheng et al., 2015 “Conditional Random Fields as Recurrent Neural Networks”

Goal: image segmentation

Model: fully-connected CRF

Baseline Prediction Algorithm: mean-field inference for fixed # iterations.
Neural Network Representation:
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Every step in mean-field is differentiable, so you can train directly wrt the downstream loss.



Iterative Prediction using Neural Networks

e Siamese networks

Bromley et al., 1993, Le and Mikolov, 2014

* Generating adversarial examples

Szegedy et al., 2014, Goodfellow et al., 2014

* I[mage generation and texture synthesis

Mordvintsev et al., 2015; Gatys et al., 2015a;b

* Generating prediction increments
directly using a NN: ¥t+1 = ¥+ + Az, yt)

Carreira et al., 2015



Multi-Label Classification

Better losses
Elisseeff & Weston, 2001; Godbole & Sarawagi, 2004; Zhang & Zhou, 2006; Bucak et al.,2009

Label Embeddings (low-rank parameters)
Ji & Ye, 2009; Cabral et al., 2011; Yu et al.,2014; Xu et al., 2014; Bhatia et al., 2015

Pairwise CRFs
Ghamrawi & McCallum, 2005; Finley & Joachims, 2008; Meshi et al., 2010; Petterson & Caetano, 2011

Structured Prediction with Simple, Pre-Supposed Structure
Read et al., 2011; Jasinska & Dembczyski, 2015; Niculescu-Mizil & Abbasnejad, 2015

Compressive Sensing / Error Correcting Codes
Hsu et al., 2009; Hariharan et al., 2010; Kapoor et al., 2012



EXPERIMENTS



Multi-Label Classification Benchmarks

3 NLP tasks

Hundreds of labels

Hundreds to thousands of sparse features
Very sparse label vectors

Some have ‘positive only’ annotation
— Missing data modeling (Bucak et al., 2011; Agrawal et al., 2013; Lin et

al., 2014)
#labels | #features | # train | % true labels
Bibtex 159 1836 4880 2.40
Delicious 983 500 12920 19.02
Bookmarks 208 2150 60000 2.03




Multi-Label Classification Benchmarks

BR: Per-label logistic regression

LR: logistic regression with low-rank weights
MLP: 3-layer ReLU NN trained with logistic loss
SPEN: same feature network as MLP

BR | LR | MLP | SPEN
Bibtex 37.2 | 39.0 | 38.9 42.2
Delicious | 26.5 | 35.3 | 37.0 35.2
Bookmarks | 30.7 | 31.0 | 33.8 34.4

Modeling missing data:
Provides improvements on some tasks (depends on how they were annotated).
Eg., Lin et al. get 44.2 on Bibtex, but only 33.3 on Delicious.



Structure Learning with SPENSs

Experiment:
1. Generate data with known interactions between
labels
2. Fita SPEN

3. Inspect the measurement matrix and see if we
recovered the interactions



Synthetic Data

64 dim 16 dim 16 dim

BlockMax function:
1) Split z into blocks

P T PP P R

2) Identify the max value in each block

y=[0010]1000/0010]0100]



Measurement Matrix

linear

RelLU HardTanh

_/ _/



Accuracy on the Synthetic Task

Questions:

1. Is it even possible for a feed-forward predictor to capture this
block structure?
2. What’s the most parsimonious way to model this data?

# train examples | Linear | 3-Layer MLP | SPEN w/ Linear Local Energy
1.5k 80.0 81.6 91.5
15k 81.8 96.3 96.7
Observations:

1. SPEN can generalize better from much less data.
2. The MLP can capture the data constraints, given enough

examples.




Conclusion

Prior Structured Prediction Work Structured Prediction Energy Networks




Future Applications

* Entity type tagging
* Vision problems

— denoising, segmentation, etc.

e Structure learning for time series



More Future Work

New training techniques
— Use the ‘unrolling” approach

Avoid ‘curse of last reducer’

How to make measurement matrix most
interpretable

Speed up prediction by pushing the feature
representation to capture more structure.



THANKS!



