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Overview	

•  Structured	Predic+on	Background	
– Mul+-label	classifica+on	
–  Structured	predic+on	approaches	
–  Expressivity-tractability	tradeoffs	
–  Chicken	and	egg	problem	

•  Deep	Learning	and	Structured	Predic+on	
–  Prior	aGempts	to	improve	expressivity	in	structured	predic+on	
– Mo+va+on	for	our	work	

•  Structured	Predic+on	Energy	Networks	
–  Very	generic	predic+on	technique:	gradient	descent	
– Model	label	interac+ons	using	a	deep	architecture	

•  Experiments	



STRUCTURED	PREDICTION	
BACKGROUND	



Mul+-Label	Classifica+on	

True	labels:	
	animal,	day*me,	ac*on,	outside,	…	

	
False	labels:		

	nigh4me,	inside,	person,	…	
	

True	labels:	
	poli*cs,	signed,	historical_document,…	

	
False	labels:		

	sports,	cooking,	dialog,	…	
	

y = {y1, . . . , yL} 2 {0, 1}LPredict		

Images:	Wikimedia	Commons	



Independent	Predic+on	

Input	 Feature	
Vector	

animal	
	

day*me	
	

nigh4me	
	

outside	
	

animal	
	

inside	
	

Independent	Per-Label	
Predictors	

Feature	Vector	

Per-Label	Predic+on	

A		 walk	 in	 the	 field	

Bad	model,	
but	it’s	fast!	



Joint	Predic+on	

CRF,	HMM,	etc.	

Input	
Feature	
Vector	

E
x

(y)
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Func+on	

Test-Time	Op+miza+on	

argmin
y2Y

E
x

(y)

Independent	Predic+on:	models	interac+ons	among	inputs	
Joint	Predic+on:		models	interac+on	among	inputs	and	among	labels	



Joint	Structured	Predic+on	Examples	

Model	Structure	 Predic;on	Method	

Sequence	 Viterbi,	Forward-Backward	

Grid	 Loopy	BP,	Graph	Cuts,	Gibbs	Sampling	

Parse	Tree	 Maximum	Spanning	Tree,	Eisner	Algorithm	



Search-Based	Joint	Predic+on	

Eg.	Hall	et	al.,	2006;		Daume	et	al.,	2009;	Chang	et	al.,	2015	

A		 walk	 in	 the	

…	



Why	Test-Time	Op+miza+on?	
Isn’t	Everything	‘Feed	Forward?’	

Answer:	Yes,	but	this	perspec+ve	isn’t	helpful.	
	
Overall,	you	want	a	predictor	that	is:	
1)  Parametrized	compactly		
2)  Provides	opportuni+es	to	inject	domain	knowledge.		
3)  Differen+able	

		Op+miza+on-based	predic+on	ofen	sa+sfy	these	criteria.	

Images:	amazon.com	and	whitewaterwest.com		
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Tradeoffs	in	Structured	Predic+on	

Sta+s+cal	
	

Expressivity	vs.	Parsimony	

Computa+onal	
	

Complexity	of	Predic+on	



Learning	Joint	Predic+on	Models		

min
✓

X

i

L (yi, F✓(xi))
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yi, argmin

y
E✓(y;xi)

◆

exact	op+miza+on	may	be	intractable	
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yi,Algorithm (✓)(xi)

⌘



Structured	Predic+on	in	Prac+ce	
•  Goal	1:		

	Model	the	important	interac+ons	between	x	and	y.		
	
•  Goal	2:		

Choose	a	model	that	provides	efficient	combinatorial	
op+miza+on	over	y.			
	
	

?	

Model	 Inference	Algorithm	



Structure	Learning	

•  Input:	mul+variate	data	
•  Output:	graphical	model	(directed	or	
undirected)		

•  Goal:	use	the	structure	to	study	the	data	

•  Challenge:	search	in	space	of	structures	



STRUCTURED	PREDICTION	ENERGY	
NETWORKS	



Our	Experiments	

•  Labels	may	be	mutually	exclusive,	imply	each	other,	etc.	
•  Would	like	to	automa+cally	discover	the	interac+ons	between	labels	
•  Candidate	models	(eg	loopy	CRFs)	are	computa+onally	expensive	

Difficult	Modeling	Task	

y

…	

poli*cs	

sports	

historical_document	

cooking	

signed	

x

Mul+-Label	Classifica+on	



Deep	Learning	

Input	

Predic+on	

Krizhevsky	et	al.,	2012	

Edge	Detectors	

Ng.,	CS229	lecture	

Object	Part	Detectors	



Mo+va+on	for	Our	Work	
Neural	networks	are	good	at	feature	learning	for	the	input	x.	

	Can	we	also	use	them	to	do	structure	learning	for	the	output	y?	
	
	
	
	
	

Gradient	descent	is	an	extremely	generic	op+miza+on	algorithm.			
Let’s	use	it	at	test	+me	to	produce	predic+ons.	

x

y
?	

Model	 Inference	Algorithm	



Structured	Predic+on	Energy	Network	
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Differen+a+ng	the	Energy	

Feature	
Network	

Energy	
Network	 -1	

Backprop	

@Energy

@y

@Energy

@x



SPEN	

E(F (x), ȳ)

F (x)

Deep	Energy	Func+on	

Feature	Network	

Energy	Network	

‘Sof’	Predic+on	

(returns	a	vector)	

Solve	using	projected	gradient	descent	

ȳ⇤ = argmin
ȳ2[0,1]L

E
x

(ȳ)

Final	Predic+on:	either	use	sof	predic+on,	or	round	

Key	Simplifica+on:	Convex	Relaxa+on	of	y	to		

{0, 1}L �! [0, 1]L
ȳ



SPEN	

x

E(F (x), ȳ)

F (x)

ȳ



SPEN	

x

E(F (x), ȳ)

F (x)

ȳ



Predic+on	

} entropic	mirror	descent		
(aka	exponen+ated	gradient)	

(Beck	and	Teboulle,	2003)	



SPEN	Architecture	used		
In	Our	Experiments	

E
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Elabel
x

(ȳ) = c>2 g(C1ȳ)

Feature	Network:	Mul+-Layer	Perceptron	

Energy	Network:	Two	Terms	

per-label	linear	model	

some+mes	deeper	

F (x) = g(A2(g(A1(x)))



Architecture	in	Our	Experiments	

x

F (x)

ȳ
local	energy	

label	energy	

sum	



Structure	Learning	using	SPENs	

Elabel
x

(ȳ) = c>2 g(C1ȳ)

Measurement	Matrix	

Computa+on	scales	linearly	with	number	of	labels.	
		
Captures	high-arity	interac+ons	without	exponen+al	blowup.	
	
Measurement	matrix	may	reveal	interpretable	structure.	



Learning	

X
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Structured	SVM	Loss	(Taskar	et	al.,	2004;	Tsochantaridis	et	al.,	2004)	
	

Loss-Augmented	Inference	

we	require	differen+able	surrogate	

Learning:	max-min	problem	with	inexact	op+miza+on	in	inner	loop.	



Comparison	to	CRFs	

	

	

Inexact	predic+on	in	inner	loop	of	SSVM	is	more	benign		for	CRFs	than	for	SPENS	(Kulesza	&	Pereira,	
2007;	Finley	&	Joachims,	2008)	

SPEN	 CRF	

Dependence	on	#	labels	 O(L)	 O(L2)	or	worse	
Convex	predic+on	problem	 No	 Some+mes	
Automa+c	Structure	Learning	 Easy	 Yes,	but	Complicated	

Max	Likelihood	Training	 No	 Yes	
‘Sof’	Predic+ons	 Kind	Of	 Yes	
LP	Relaxa+on	 No	 Yes	

Ecrf
x

(y) = s>2 vec(yy
>)



Details	

•  Cache	features	F(x)	for	 	 	 	 	 	.	
E(F (x), ȳ)

•  Aggressively	parallelize	predic+on	using	
GPUs.	

•  Pre-train	feature	network	F(x)	using	
independent	per-label	loss.	

•  Use	more	sophis+cated	op+miza+on	for	y	
(eg.,	Nesterov	Accelera+on).	



RELATED	WORK	



Task	 Constrained	Outputs	 Strong	Prior	
Knowledge	about	
Likely	Structures	

Mul+-Label	
Classifica+on	

no	 no	

Sequence	
Tagging		

no	 yes	

Dependency	
Parsing	

yes	 yes	

Image	
Segmenta+on	

no	 yes	

Object	Detec+on	 no	 no	

Comparing	Structured	Predic+on	Tasks	



Deep	Learning	&		
Independent	Predic+on	

Just	make	it	deep!	

Input	 Feature	
Vector	

animal	
	

day)me	
	

nigh-me	
	

outside	
	

animal	
	

inside	
	

Independent	Per-Label	
Predictors	

x

learned	features	

y



Deep	Learning	&		
Joint	Predic+on	

Condi+onal	Random	Field:		
mapping	from	x	to	a	Markov	Random	Field	over	y	

Prior	work:	use	deep	features,	but	keep	same	graphical	model	for	y	

Eg.,	LeCun	et	al.,	2006;	Collobert	et	al.,	2011;	Huang	et	al.,	2015		

learned	features	

x

y

Pro:	use	exis+ng	predic+on	algorithms	
Con:	no	structure	learning;	only	performs	feature	learning	on	x	



Deep	‘Unrolling’		
of	Structured	Predic+on	Algorithms	

•  Step	1:	choose	a	model	family	
•  Step	2:	choose	an	(approximate)	predic+on	technique	

	Eg.,	Stoyanov	et	al.,	2011;	Domke,	2013;	Hershey	et	al.,	2014;	Zheng	et	al.,	2015	

Black	Box	
Op+miza+on	

Black	Box	
argmin

y2Y
E

x,✓

(y)

Input	
Feature	Vector	

Parametrized	
Energy	Func+on	

E
x,✓

(y)
Differen+able	Gray	Box	

Algorithm (✓)(x)

•  	Step	3:	unroll	the	predic+on	technique	into	a	deep	computa+on	graph	with	
free	parameters		 

•  Step	4:	train						directly	with	backprop	 



Example	of	‘Unrolling’	
Zheng	et	al.,	2015	“Condi+onal	Random	Fields	as	Recurrent	Neural	Networks”	
	
Goal:	image	segmenta+on	
Model:	fully-connected	CRF	
Baseline	Predic+on	Algorithm:	mean-field	inference	for	fixed	#	itera+ons.	
Neural	Network	Representa+on:		
	
	
	

Every	step	in	mean-field	is	differen+able,	so	you	can	train	directly	wrt	the	downstream	loss.	



Itera+ve	Predic+on	using	Neural	Networks	
	

•  Siamese	networks		
Bromley	et	al.,	1993,	Le	and	Mikolov,	2014	

•  Genera+ng	adversarial	examples		
	Szegedy	et	al.,	2014,	Goodfellow	et	al.,	2014	

•  Image	genera+on	and	texture	synthesis		
	Mordvintsev	et	al.,	2015;	Gatys	et	al.,	2015a;b	

yt+1 = yt +�(x, yt)
•  Genera+ng	predic+on	increments	
directly	using	a	NN:	
	Carreira	et	al.,	2015		

	



Mul+-Label	Classifica+on		
•  BeGer	losses		

Elisseeff	&	Weston,	2001;	Godbole	&	Sarawagi,	2004;	Zhang	&	Zhou,	2006;	Bucak	et	al.,2009	

•  Label	Embeddings	(low-rank	parameters)	
	Ji	&	Ye,	2009;	Cabral	et	al.,	2011;	Yu	et	al.,2014;	Xu	et	al.,	2014;	Bha+a	et	al.,	2015	

•  Pairwise	CRFs	
Ghamrawi	&	McCallum,	2005;	Finley	&	Joachims,	2008;	Meshi	et	al.,	2010;	PeGerson	&	Caetano,	2011		

•  Structured	Predic+on	with	Simple,	Pre-Supposed	Structure	
	Read	et	al.,	2011;	Jasinska	&	Dembczyski,	2015;	Niculescu-Mizil	&	Abbasnejad,	2015	

•  Compressive	Sensing	/	Error	Correc+ng	Codes	
	Hsu	et	al.,	2009;	Hariharan	et	al.,	2010;	Kapoor	et	al.,	2012	

	

	



EXPERIMENTS	



Mul+-Label	Classifica+on	Benchmarks	

•  3	NLP	tasks	
•  Hundreds	of	labels	
•  Hundreds	to	thousands	of	sparse	features	
•  Very	sparse	label	vectors	
•  Some	have	‘posi+ve	only’	annota+on	
– Missing	data	modeling	(Bucak	et	al.,	2011;	Agrawal	et	al.,	2013;	Lin	et	

al.,	2014)	

	



Mul+-Label	Classifica+on	Benchmarks	

Modeling	missing	data:	
	Provides	improvements	on	some	tasks	(depends	on	how	they	were		annotated).			
	Eg.,	Lin	et	al.	get	44.2	on	Bibtex,	but	only	33.3	on	Delicious.	

BR:	Per-label	logis+c	regression	
LR:	logis+c	regression	with	low-rank	weights	
MLP:	3-layer	ReLU	NN	trained	with	logis+c	loss	
SPEN:	same	feature	network	as	MLP	



Structure	Learning	with	SPENs	

Experiment:	
1.  Generate	data	with	known	interac+ons	between	

labels	
2.  Fit	a	SPEN	
3.  Inspect	the	measurement	matrix	and	see	if	we	

recovered	the	interac+ons	



Synthe+c	Data	

z = Ax

x y = BlockMax(z)

64	dim	 16	dim	 16	dim	

BlockMax	func+on:	
	
1)  Split	z	into	blocks	

z = [· · · · | · · · ·| · · · ·| · · · ·]

y = [ 0 0 1 0 | 1 0 0 0 | 0 0 1 0 | 0 1 0 0 ]
2)		Iden+fy	the	max	value	in	each	block	



Measurement	Matrix	

ReLU	 HardTanh	
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Accuracy	on	the	Synthe+c	Task	

Ques+ons:	
1.  Is	it	even	possible	for	a	feed-forward	predictor	to	capture	this	

block	structure?	
2.  What’s	the	most	parsimonious	way	to	model	this	data?	

Observa+ons:	
1.  SPEN	can	generalize	beGer	from	much	less	data.	
2.  The	MLP	can	capture	the	data	constraints,	given	enough	

examples.		



•  steep	tradeoff	between	
tractability	and	model	
expressiveness.	

•  model	selec+on	is	replaced	
by	algorithm	selec+on.	

•  structure	learning	avoided,	
since	it	can	interfere	with	
tractability	

•  deep	learning	features	for	x,	
but	not	for	y	

Conclusion	
Prior	Structured	Predic+on	Work	 Structured	Predic+on	Energy	Networks	

•  simple	predic+on	algorithm	
•  per-itera+on	complexity	

doesn’t	depend	on	treewidth	
•  structure	learning	using	deep	

architecture	
•  deep	learning	features	for	x	
•  fewer	guarantees	than	CRFs	
•  Applicable	to	wide	variety	of	

structured	predic+on	tasks	
	



Future	Applica+ons	

•  En+ty	type	tagging		
•  Vision	problems	
– denoising,	segmenta+on,	etc.	

•  Structure	learning	for	+me	series	



More	Future	Work	

•  New	training	techniques	
– Use	the	‘unrolling’	approach	

•  Avoid	‘curse	of	last	reducer’	
•  How	to	make	measurement	matrix	most	
interpretable	

•  Speed	up	predic+on	by	pushing	the	feature	
representa+on	to	capture	more	structure.	

	



THANKS!	


