A Linear Dynamical System
Model For Text

David Belanger (UMass Amherst)
Sham Kakade (Microsoft Research)

UMASSCS Microsoft Research

Semi-Supervised Learning in NLP

1. Do unsupervised learning that induces some reduced-
dimensionality representation of text.

N

M

2. Apply the di_rsr_1ensionalitv reduction tolvannotated data.

=~ =
NNP/\NNP | NP/AEJ\p\JJ | .-.\ v’ef'Aﬁi’;:;»»/r};L;—¥—¥—*_ip TTTT
| PN \ (PN S /"
S oT NN NP NNP CD
‘ I Vl k ‘ \ D:{_ >A;‘.’7.|-<>] I
‘ xecubv
¢ ...o , N
0./,«/ ,fA
3. Do supervised learning on the mapped data. RS
it ,, 0~ o0
o Op

1.5

0.5

-0.5

-1.5

Word Embeddings

Map each word to a low dimensional vector

Country and Capital Vectors Projected by PCA

1 1

Chinas
*Beijing
B Russia¢ 7]
Japanx
i Moscow
Turkey- Ankara *Tokyo
Poland«
- Germgny< -
France Warsaw
x Berlin
- Italy< Paris .
Athens
Greece« "

. Spairx Rome i
- Portugal ﬂ_isb(;'r\fadnd 1
1 1 1 1 | 1 1

-1.5 -1 -0.5 0 0.5 1 1.5 2

(Bengio et al. 2003; Mikolov et al., 2013; ...)

Word Tokens vs. Word Types

Types:
What you look up in the dictionary.

Tokens:
Words in context.

“The dog ran.”

|

Token Type

Word embeddings are typically at the type level

Our Work

Goal:
Token Embeddings

We should embed word tokens in context.

“Bank of England” vs. “River Bank Cafe”

“chair of the department” vs. “chair at the dinner table”

Consideration:
Advantages of Type-Level Training

Computational:

- = RGs=

Training data compressed to sparse co-occurrence counts.

Size of matrix is independent of size of corpus!

#(w + o)
N + aV

Smoothing is difficult in token-level training.

7 (w)

Statistical: P(w) = N — P(w) —

Consideration:
Latent-Variable Sequence Modeling

* Many word embedding methods consider
sliding windows or bags of words.

e Text is structured as a sequence. Ideally our
token embedding method would model this

structure.

* The latent state yields dimensionality reduction

Our General Method

1) Learn a generative model for text sequences
with a vector-valued latent variable for every
token.

2) At test time, obtain token embeddings using
posterior inference over these latent
variables.

Related Work

Latent-state sequence models trained at token level:
— HMMs w/ Baum-Welch (Rabiner, 1986)
— RNN language model (Mikolov et al., 2010)
— Neural language model (Bengio et al., 2003)

Sequence model with type-level training, but no dimensionality reduction:

— Ngram language models

Type-level training of word embeddings, but not a sequence model:
— Glove (Pennington, et al., 2014)
— PPMI factorization (Levy and Goldberg, 2014)
— CCA (Dhillon et al., 2012, Stratos et al. 2015)

Token-level training, but not a sequence model:
— Word2Vec (Mikolov et al., 2013) and variants

Type-level training of sequence model, but requires third-order statistics:
— Spectral learning of HMMs (Hsu et al., 2008)

Linear Dynamical Systems

Gaussian Linear Dynamical System

Generative model:

latent states ajt p— - —I— 77
observations wt — - 6,

Kalman Filter

* Exact, Efficient posterior inference for latent states.

40 60 80

(r-bloggers.com)

 Maintains mean and variance for every timestep.
* Cubic in relevant dimensions.
* Forward and backward passes.

Steady State Kalman Filter

Fact 1:
The Kalman filter’s update to the posterior variances doesn’t
depend on the actual observations.

Fact 2:
This variance reaches a steady state value quickly.

Exact Kalman Filter

Kalman Filter
w/ Steady State Assumption

it = (A - K,,CA)Z: 1 + Kyw,

Steady-State Filtering

Posterior mean at t-1,
given observations
including t-1.

N |

Z/I\fi — (A — KSSOA)Z%E:% -+ Ksswt

U U

Posterior mean at t, Kalman Gain Matrix
given observations

including t.

Precompute

Steady-State Backwards Pass
(Kalman Smoothing)

Tp = Jssa_?t—I—l aE (I — JSSA)jjt

Doesn’t depend on observation dimension. Fast.

LDS for Text

Gaussian Likelihood for Words?

One-hot encoding 0,...,1,...0

Effect of using Gaussian Likelihood

CAN DO CAN NOT DO

Perform Posterior Inference Generate Text
Evaluate Probability of Observation
Fit Model Very Quickly

Relationship to RNN Language Model

j\fi — (A — KSSCA)é\Z'i:% -+ KSS’LUt

/

Product with one-hot vector = word embedding lookup

Kalman filter updates

RNN language model updates with no non-linearities

Text-LDS vs. RNN Language Model

LDS * Fast learning (this paper) ¢ Can’t generate text from it.
* Backwards Pass * Perplexity uninterpretable
RNN-LM ¢ longer-term memory * slow training

» difficult to tune stepsizes, etc.

Spoiler Alert:
We speed up RNN training by initializing with LDS parameters.

Learning the LDS Parameters

Type-Level Sufficient Statistics

\Iji — {"t [’U]t_|_z'wt]

(wordy, i positions to the right of word j)
N

Wil =
Collect in single (parallelizable) pass over corpus.

Spectral learning of HMMs uses third order moments

ﬂt [wt+2 X W41 X wt] difficult to estimate!

Learning Algorithm 1:
Subspace ldentification
(Method of Moments)

(Van Overschee & De Moor, 1996)

Step 1: Construct Big, Sparse Hankel Matrix

/ v, v, 1 W, ... Wy \
L wrr+1 Qtr Q/r_]_ o o o Q2
H’r’ I
\ Vo1 Worp Wpy ... W,)
Step 2: (Randomized) SVD (Halko and Tropp, 2009)
H. =T1,A,
. PROS | CONS
Fast, Non-Iterative Statistically Suboptimal

Statistically Consistent

Two-Stage Estimation

Meta-Algorithm:

1) Initialize parameters

2) Do local search on likelihood surface using
EM (because MLE is statistically optimal)

3

| Bad

Method-Of-Moments Initialization
Initialization

(Statistically Consistent) -}

Learning Algorithm 2:
Expectation-Maximization
(Initialized With Subspace ID)

E-Step ' er the corpus

M-Step = Two easy least-squares problems

Slow. Not at type-level.

ASOS E-Step (Martens, 2010)

Observation 1:
The M-step is least-squares, so all we need from the E step are time-averaged
second order statistics.

E[zw, |, E[Z;2,], E[Zp12, |

Observation 2:
If the posterior follows a Markov relationship (Kalman Filter), then so do the
time-averaged second order statistics.

Example Markov relationship Lt — ACUt_l -+ bt

Markov relationship on T T T
second-order statistics]E[xtwt] — A]E[wt—lwt] +]E[btwt]

Observation 3:
Using W;, we can Kalman filter + smooth second-order statistics matrices directly!

Recap

So far: how to handle very large corpora.

Next: how to handle large vocabularies by
exploiting the specific structure of one-hot data.

High Dimensional Observations

Ty = Az +n

W+ — O.Tt + €,

e~ N(0,D),n~ N(0,Q)

Can’t even store a V x V matrix!

Option 1: Use diagonal approximation.

Option 2: Exploit specific functional form of MLE for D

MLE for Noise Covariance

L = vector of word frequencies

Uy = EiJww, | = diag(p) — pp "

MLE noise covariance is diagonal-minus-low-rank:

[—pips +[cMT)B[ETM]'

But we need the inverse covariance all over the place...

Sherman-Woodbury-Morrison to the rescue!

More Linear Algebra Tricks
(see paper)

* Whiten the data for SSID using unigram
frequencies.

* Account for rank deficiency of the one-hot
observations.

Obtaining Token Embeddings
using the LDS

Train Time:
1. Train the LDS

2. Find posterior latent covariance on training data
3. Transform LDS so that training latent covariance is

I l . I
15
1k
4 05l
-05F
N
4 -15F
. . I . , h L , . . . , J
2 1 0 1 2 3 25 2 15 1 05 0 05 1 15 2 25

Test Time:

1. Run Kalman smoothing per-sentence to get posterior
over latent states.

2. Token Embedding = Posterior Mean

Experiments

LDS Transition Dynamics

The transition matrix A converts right singular vectors into left singular
vectors. Are these interpretable?

Right Singular Vector Left Singular Vector

chris mike steve jason tim jeff bobby ian evans anderson harris robinson smith

greg adam tom phil nick brian ron phillips collins murray murphy

brooklyn art science harlem princeton symphony journal briefing street harbor
manhattan wimbledon hartford arts beach birthday medal avenue bay innings
greenwich advertising massachusetts box park district

salt chicken pepper chocolate butter chicken cream pepper sauce cheese
cheese cream sauce bread sugar thick chocolate salt butter bread sweet
policemen helicopters soldiers suspects remained expressed recommended denied

demonstrators guards iraqis personnel remains feels gets resumed is sparked

WSJ Part of Speech Tagging

Method:
Local classification using
dense features per token.

Word2Vec | LDS-SSID LDS-EM

92.58 83.00 94.30

Remarks:
1. SSID performs poorly on its own.
2. The LDS sequence model outperforms Word2Vec

WSJ Part of Speech Tagging

Method:
Structured prediction using
dense + lexicalized features

Lex Lex + LDS-EM Lex + Word2Vec

97.28 97.32 97.35

Remarks:

LDS sequence modeling unnecessary when performing
global structured prediction.

RNN Initialization

 The Kalman Filter updates are identical to the those
of an RNN with no non-linearities.

* Non-linear RNN training with SGD is slow.
* |nitialize the RNN with LDS parameters!

300

= | DS
== Baseline

2501

Perplexity
N
S

1501

100, 5 10 15 20
Epochs

Conclusion

We obtain context-dependent word embeddings
by performing posterior inference in an LDS.

You can learn continuous latent state sequence
models using only type-level statistics!

Our LDS is a simple, scalable alternative to an
RNN. Usefulness:

— Current work: initialize RNN with LDS parameters.

— Future: use within variational latent-variable RNN
frameworks.

Code coming soon. Check my website.

Questions?

Learning Algorithm: Overview

Step 1: Gather \IJZ- = 1 [wt+ith]

Step 2: Estimate LDS parameters using Subspace
|dentification (Method of Moments)

Step 3: Perform about 50 iterations of EM to
refine parameters.

Steps 2 and 3 only operate on U,

NER Tagging

Method:
Structured Prediction using
Dense + Lexicalized Features

Lex + Word2Vec | _Lex + LDS-EM

89.3 89.8 90.0 89.9

Remarks:
Similar gain as established benchmarks.

Subspace ID (continued)

Step 2: SVD

H, =T,A,

Step 3: Use Nested Structure to Recover A
and C using Least Squares

FT:[C; CA: CA*; ... CA""_l]

A, = [A71G A™2G .. AG G]

LDS on Projected Words

* Step 1:

Train type-level word embeddings using some
existing algorithm.

* Step 2:

Project the unsupervised training corpus.
* Step 3:

Fit an LDS on the projected data.

LDS on Projected Words

* Advantages

— Gaussian assumption is more reasonable.

— Linear algebra tricks are unnecessary for
scalability

* Prob
— Sti
—Vu

ems
| can’t generate text from it.

nerable to choice of embeddings.

LDS on Projected Words

New random variable:

M?Ut
Covariance of projection = projection of covariance:

‘Et[th(th)T] =M 'Et[wtth]MT

Motivation:
EM vs. SGD

* Tuning learning rate schedules for non-convex
problems is annoying and difficult.

 EM takes big batch steps on the likelihood.

| word2vec | LDS-SSID | LDS-EM

Universal 95.00 89.26 96.44
Penn 92.58 83.00 94.30

| lex | lex+IDSEM | Lex+Word2vec

Universal 97.97 98.05 98.02
Penn 97.28 97.32 97.35

Neural Language Model

(Mnih and Hinton, 2007)

combination of context

n—1
Represent context as linear A
r = E CiTw,
words’ embeddings 1=1

Word probability is log-bilinear
exp(fT'rw + bw)
P(wp, = wlwiip_1) = -
" > exp(Flrj + bj)

ASQOS

(Martens, 2010)

Step O:
Collect empirical covariances at various lags

U, = EyJwpw, |

Step 1:
Approximate covariances at high lags by assuming that they are
drawn from the current model parameters.

Step 2:
Run a Kalman filter on the second order statistics directly.

Step 3:
Use the estimated covariances at lag = 0 to perform the M step.

Learning Algorithm: Overview

Motivation: Using Co-Occurrence Counts

* Learning is independent of corpus size.
* Can apply type-level smoothing.

Consideration:
Sequence Model

Method Based on a Sequence Model?

Yes N

Brown Clusters Word2Vec
Recurrent Neural Networks Glove
POS Induction with HMMs CCA

